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Synthesis of fractal signals with wavelet bases*
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Abstract Based on the characterization of self-similarity, a new model of the fractal signals with discrete
wavelet synthetic formula is obtained, and a formula to calculate the time-average spectrum of the signals constructed by
the new model is given. It is shown that the new model is more precise than the previous ones.
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In this paper, we describe how to use the synthesis formula of discrete wavelet transform to rep-

[1~4]

resent a fractal signal. In contrast with traditional methods , wavelet transforms generally make

the analysis easier. So the wavelet analysis of 1/ f-type signals is very important in many applications.

Recently, Wornell!™)

has studied the relationship between orthonormal wavelet basis and nearly -1/f
models, and presented a representation of 1/f-type signals. He shows that wavelet expansion in terms
of uncorrelated random variables can constitute models for 1/ f-type signals. His method is simple but
disregards the dependencies among wavelet coefficients. In fact, such dependencies have effect on the
spectrum of the constructed signals (refer to the experiments in Sec. 3). We develop a new method
for 1/ f-type signals, in which the generation of 1/f-type signals relies on the correlation structure of
wavelet coefficients and the spectral parameter ¥. A comparison between Wornell’ s method'®! and

ours shows that the latter is more precise in approaching the 1/f-type signals.
1 Wavelet transform of fractal signal

Let f(t) be a random process, and — ® < ¢t < ® . For any positive real number a, if the e-
qualities

E[f(at)] = a"E[f(t)] and E[f(at)f(as)] = a*E[f(2)f(s)] (1)

are satisfied, then f(t) is a self-similar process (signal) with the parameter H, where E[ * ] denotes
the mathematical expectation of a function. If f(¢) is a self-similar process, and has power spectrum
obeying the following relationship:

1

S(w) o o7 (2)
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then f(t) is called a 1/f process (or a fractal signal), where ¥ = 2H + 1 is a spectra parameter.
The self-similarity is one of the important properties of a 1/f process. It means that the statistics of a
1/f process do not change when we stretch or shrink the time axis. That is, the process lacks a char-
acteristic scale: the behavior of the process on short time scales is the same as its behavior on the long
ones. It is noted that for a signal’s discrete wavelet transform, the scales take discrete values 2~ ™,
m&EZ. So we need to make a further explanation for the above definition. In the following discus-
sions, the self-similarity of the signal f(¢) means that Relation (1) is satisfied for all the discrete re-
al number a € {2- "I m€EZ}.

Let ¢(¢) be a basic wavelet and ¢(¢) its conjugate basic wavelet. Then the discrete wavelet
transform of a signal f(¢t) can be defined by®

x(m,n) ='[:f(t)¢T,,.(t)dt, m,n € Z, 3)

where ¢, ,(t) =2™2¢(2™ ~ n). If f(¢) satisfies the admissibility condition, the representation of

f(t) is
) = 3 S e (1), 4)

me-®npe - ®

where ¢, o = (f(£)s¢m. ()Y, and ¢ () is a dual wavelet of ¢(¢). The wavelet transform be-
tween two scales also possesses self-similarity. For this reason, the fractal signals treated by wavelet

(793 In this study we will model 1/ f-type signals us-

transform have aroused a great deal of attention
ing Eq. (4). The characterization of self-similarity for 1/f signals by wavelet transform is to be dis-

cussed first.

If ¢(t) is an orthonormal wavelet and the wavelet transform of a signal f(¢) is defined by
Eq. (3), x(m,n) are just its wavelet coefficients, i.e. ¢, , =x(m,n). By Eq. (1), it is easy
to prove that f(¢) is a self-similar signal with parameter H, if and only if for any k, m,n € Z and
VY m;,n,€Z,i=1,2 hold such that

E[x(m - k,n)] = 2@H+D2E[ 5 (m,n)], (5)
and
E[x(ml - k,nl)x(mz - k,nz)] = 2(7'""1)"E[x(m1,n,)x(mz,nz)]. (6)

Equation (6) establishes the relationship among the wavelet coefficients x(m , n) between two
scales. If we compare the wavelet coefficients at any scales with the wavelet coefficients at scale 1
(corresponding to m =0), this relationship is more obvious. Let R, n2(ny,n,) = E[x(my, n;)
x(my,n;)], and R,(*) denote R, ,,(*+) when m = m; = m,. Then R, () and its normaliza-

tion r,(*) can be written as

Rm(nlynz) = 2_m(2H+1)Ro(n19n2)9 (7)

rn(ny,ny) = R,,;(nl,nz)/\/var(x(m,nl))var(x(m,nz))
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= Ro(nl,nz)/\/var(x(O,nl))var(x(O,nz)) = ro(ﬂnl,nz). (8)

The above expressions verify that the correlation structure of the wavelet coefficients for self-similar
signals is independent of scales, i1.e. the property of the second-order statistic is invariable with

scale.
2 Modeling for fractal signals

Let £(m,n) be a zero mean 2-D random process. Define

) = S S elm,n)g, (1) 9)

as a model for modeling 1/f signals. By the discussion in Sec. 1, the process £(m,n) ought to sat-
isfy Relationships (5) and (6), and to be wide-sense stationary in n if we expect that f(¢) is of self-
similarity. To calculate the spectrum of f( ), we consider a resolution-limited approximation to f(t)

) = S S elm, ), (1),

m=-M n=-=

that is, the information at resolutions coarser than 2¥ and finer than 2~ ¥ is discarded, where M is a
sufficiently large positive integer. By Eqs. (5) and (6), the power of the signal f(¢) at each scale

is infinite. So we have to consider the time-averaged correlation functions as follows:
2M
Ry(e) = 2] BLAC At + ©))ds.

Using Rfu and f(t) = ;im fu(t), we have already proved the following theorem.

Theorem 1. Let ¢( t) be an orthonormal wavelet with the Rth-order regularity, R > H + 1/
2>0, and £€(m, n) satisfies Eqs. (5) and (6) as well as the following conditions: (i) for any m €

Z, §(m,n) is wide-sense stationary in n; (i) Y, | Ry(k) | < % , where Ro(k) = E[£(0,n +
k=0

k)£(0,n)]; (iii) for any my, m, €Z, E[é(my,n;)é(my,n,)] =0 if m 5 m,. Then f(¢)

constructed by Eq. (9) is a self-similar signal with parameter H and has a time-averaged spectrum

S w) = D) 27827 ") | $(27w) 12, (10)

m= -

where So(w) = 2 Ry(k)e ™, v = 2H + 1, and ¢ (w) denotes the Fourier transformation of
k= -
¢(1).

Since R, (k) =2"""Ry(k), we have S,(w) =2""8.(w). Hence the general terms in Eq.
(10) may be considered as a spectrum of f(¢) at corresponding scales, and S¢(w) as the superposi-
tion of an infinite number of such spectra. Note that the spectrum S;(w) of the signal constructed by
Eq. (9) relates to not only the spectral parameter ¥ but also the correlation structure R, (k) among
&(m,n) at each scale, which differs from the previous model®’ . On the other hand y Sf( w ) has oc-

tave-spaced ripple which is uniform-spaced on a log-log frequency plot, i.e. for any m € Z,
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§,(2"w) = 27S (w).

[10] S it is not avoidable when us-

This ripple essentially results from the discretization for the scales
ing Eq. (9) to generate 1/f-type signals. For this reason, the generated signal is always a nearly-
1/f signal. However, Eq. (9) with a orthonormal wavelet basis constitutes a model better than the

others.

If So(w) >0 for lwl >0, we can easily show that the spectrum of Sf(w) is bounded in the

sense that

mf/lw|7$5f(w)SMf/|w|7 (11)
for some 0 < my< M;< @, i.e. the generated signal f(z) is a nearly-1/f signal.
3 Experimental results

It is clear that the positive numbers M, and m; in Eq. (11) characterize the error between the
spectrum S;(w) and the desired 1/f spectrum. So the error of the generated signal f () is defined

as E = M;— m;, where m;=inf(lw!”S/(w)) and M;=sup(lw!’Sy(w)).

Let £(m,n) be a collection of mutually uncorrelated, zero-mean random variables with vari-
ances var(£(m,n)) = ¢22° "™ . Then the signal generated by Eq. (9) is nearly-1/ ). In our
method, we first need to generate a process £(m ,n). Generally, £(m,n) may have a complicated
correlation structure like Eq. (6). We can, however, choose a simple modeling for such a correlation
structure . Here for each m, £€(m,n) is chosen to be a Markov process that is both simple and effec-
tive in many applications. Such a process, for fixed m, satisfies the following first-order autoregres-

sive model:
Xy = Wy, X, - P, = w,, n>1,0<p <1, (12)

where w, is a zero-mean and stationary white Gaussian noise with covariance var(w,) = (1 - pz)
2~ 7" In this case, £(m,n) is the output of white Gaussian noise through a linear time-invariant
system. For fixed m, it has correlation function with the form R, (k)=2" rmeelkl " where a is relat-
ed to the parameter p, and a > 1. It is easily shown that £(m, n) satisfies the conditions of Theorem
1. However, the parameter a (or p) will have effect on the spectrum Sf(w) . So we need to choose
a suitable parameter a for different ¥ . Table 1 gives the experimental results with different ¥ when ¢
(t) is the Haar wavelet or the second-order Daubechies wavelet, where E,, is the error of the signals
generated by Wornell’s method and E,,, is the error of the signals generated by our method.

It is evident in table 1 that with the different parameters ¥ the errors E_, of the signals con-
structed by our method are always less than E., by the Wornell’s method. In addition, as the spec-
tral parameter 7 increases, the parameter a decreases, showing that the correlation of §(m,n) in-

creases with the increase in 7.



796 PROGRESS IN NATURAL SCIENCE Vol. 11

Table 1 Comparison between two methods

Haar wavelet Second-order Daubechies wavelet
Error Y 0.5 1.0 1.5 1.8 1.5 1.8 2.0
2.0 1.8 1.5 1.7 2.8 2.4 2.2
E o 0.45 1.77 7.01 17.14 1.75 4.52 8.61
E o 0.12 0.50 3.33 12.24 0.80 2.03 4.48
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